首页> 外文OA文献 >A Novel Sensorless Support Vector Regression Based Multi-Stage Algorithm to Track the Maximum Power Point for Photovoltaic Systems
【2h】

A Novel Sensorless Support Vector Regression Based Multi-Stage Algorithm to Track the Maximum Power Point for Photovoltaic Systems

机译:一种新颖的基于无传感器支持向量回归的多阶段跟踪光伏系统最大功率点算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Solar energy is the energy derived from the sun through the form of solar radiation. Solar powered electrical generation relies on photovoltaic (PV) systems and heat engines. These two technologies are widely used today to provide power to either standalone loads or for connection to the power system grid. Maximum power point tracking (MPPT) is an essential part of a PV system. This is needed in order to extract maximum power output from a PV array under varying atmospheric conditions to maximize the return on initial investments. As such, many MPPT methods have been developed and implemented including perturb and observe (P&O), incremental conductance (IC) and Neural Network (NN) based algorithms. Judging between these techniques is based on their speed of locating the maximum power point (MPP) of a PV array under given atmospheric conditions, besides the cost and complexity of implementing them. The P&O and IC algorithms have a low implementation complexity but their tracking speed is sluggish. NN based techniques are faster than P&O and IC. However, they may not provide the global optimal point since they are prone to multiple local minima. To overcome the demerits of the aforementioned methods, support vector regression (SVR) based strategies have been proposed for the estimation of solar irradiation (for MPPT). A significant advantage of SVR based strategies is that it can provide the global optimal point, unlike NN based methods. In the published literature of SVR based MPPT algorithms, however, researchers have assumed a constant temperature. The assumption is not plausible in practice as the temperature can vary significantly during the day. The temperature variation, in turn, can remarkably affect the effectiveness of the MPPT process; the inclusion of temperature measurements in the process will add to the cost and complexity of the overall PV system, and it will also reduce the reliability of the system. The main goal of this thesis is to present a novel sensorless SVR based multi-stage algorithm (MSA) for MPPT in PV systems. The proposed algorithm avoids outdoor irradiation and temperature sensors. The proposed MSA consists of three stages: The first stage estimates the initial values of irradiation and temperature; the second stage instantaneously estimates the irradiation with the assumption that the temperature is constant over one-hour time intervals; the third stage updates the estimated value of the temperature once every one hour. After estimating the irradiation and temperature, the voltage corresponding to the MPP is estimated, as well. Then, the reference PV voltage is given to the power electronics interface. The proposed strategy is robust to rapid changes in solar irradiation and load, and it is also insensitive to ambient temperature variations. Simulations studies in PSCAD/EMTDC and Matlab demonstrate the effectiveness of the proposed technique.
机译:太阳能是通过太阳辐射形式从太阳获得的能量。太阳能发电依靠光伏(PV)系统和热力发动机。如今,这两种技术已广泛用于为独立负载或与电网连接提供电力。最大功率点跟踪(MPPT)是光伏系统的重要组成部分。为了在变化的大气条件下从光伏阵列中提取最大功率输出,以最大化初始投资回报,这是必需的。因此,已经开发并实现了许多MPPT方法,包括扰动和观测(P&O),增量电导(IC)和基于神经网络(NN)的算法。这些技术之间的判断是基于它们在给定的大气条件下定位光伏阵列的最大功率点(MPP)的速度,以及实现这些技术的成本和复杂性。 P&O和IC算法的实现复杂度较低,但跟踪速度却很慢。基于NN的技术比P&O和IC更快。但是,由于它们容易出现多个局部最小值,因此它们可能无法提供全局最优点。为了克服上述方法的缺点,已经提出了基于支持向量回归(SVR)的策略来估计太阳辐射(用于MPPT)。与基于NN的方法不同,基于SVR的策略的显着优势在于它可以提供全局最优点。然而,在基于SVR的MPPT算法的公开文献中,研究人员假设温度恒定。实际上,这一假设是不合理的,因为白天的温度会发生很大变化。反过来,温度变化会显着影响MPPT工艺的有效性。在过程中包括温度测量将增加整个光伏系统的成本和复杂性,还将降低系统的可靠性。本文的主要目的是为光伏系统中的MPPT提出一种基于无传感器SVR的新型多级算法(MSA)。所提出的算法避免了室外辐射和温度传感器。拟议的MSA包括三个阶段:第一阶段估算辐射和温度的初始值;第二阶段估算辐射的初始值。第二阶段在一个小时的时间间隔内温度恒定的情况下即时估算辐照量;第三阶段每隔一小时更新一次温度估算值。在估计照射和温度之后,还估计对应于MPP的电压。然后,将参考PV电压提供给电力电子设备接口。所提出的策略对于太阳辐射和负载的快速变化具有鲁棒性,并且对环境温度变化也不敏感。在PSCAD / EMTDC和Matlab中进行的仿真研究证明了所提出技术的有效性。

著录项

  • 作者

    Ibrahim, Ahmad Osman;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号